Incorporating coverage for emergency calls in scheduling patient transportations

Pieter van den Berg¹ Theresia van Essen^{1,2}

¹Delft University of Technology

²Centrum voor Wiskunde en Informatica

June 25, 2014

Outline

4 Conclusions

イロト イポト イヨト イヨト

Ambulance care in the Netherlands

- 24 ambulance regions (RAVs)
- 1.100.419 calls in 2012
- Three urgency classes:
 - A1: Most Urgent, should be served in 15 min (45%)
 - A2: Less Urgent, should be served in 30 min (25%)
 - B: Non-urgent patient transportations (30%)

Figure: RAVs in the Netherlands

Patient transportation

- Transport of patient from and to hospital
- Non-urgent
- Special ambulance (BLS)
- ALS ambulance can also be used
- Known in advance?
- Two types:
 - B1: Must be executed by ALS ambulance
 - B2: Can be executed by either ALS or BLS

Some numbers

Data

- 81 B-calls a day
- Percentage B2: 43.7%
- Percentage known: 39.2%
 - 29.1% of B1
 - 47.4% of B2

イロト イポト イヨト イヨト

Some numbers

Data

- 81 B-calls a day
- Percentage B2: 43.7%
- Percentage known: 39.2%
 - 29.1% of B1
 - 47.4% of B2

Current execution

- B2 executed by ALS ambulance: 16.3%
- Average number of calls per shift: 4.5

A ∰ ► A ∃ ►

э

Some numbers

<u>Data</u>

- 81 B-calls a day
- Percentage B2: 43.7%
- Percentage known: 39.2%
 - 29.1% of B1
 - 47.4% of B2

Current execution

- B2 executed by ALS ambulance: 16.3%
- Average number of calls per shift: 4.5
- Not within 60 minutes from requested time: 22.0%

Routing problems

Static vs dynamic

<ロト < 四ト < 三ト < 三ト

Э.

Routing problems

- Static vs dynamic
- Local approach vs look-ahead approach

イロト イポト イヨト イヨト

Routing problems

- Static vs dynamic
- Local approach vs look-ahead approach

イロト イポト イヨト イヨト

Model description

• Schedule all patient transportations

- BLS ambulance
- Assign to base with ALS capacity

イロト イポト イヨト イヨト

Model description

• Schedule all patient transportations

- BLS ambulance
- Assign to base with ALS capacity
- Do not schedule before release date

イロト イポト イヨト イヨ

Model description

• Schedule all patient transportations

- BLS ambulance
- Assign to base with ALS capacity
- Do not schedule before release date
- Distinguish between B1 and B2

• • • • • • • • • • • • •

Model description

• Schedule all patient transportations

- BLS ambulance
- Assign to base with ALS capacity
- Do not schedule before release date
- Distinguish between B1 and B2
- BLS tours should be feasible

э

Model description

• Schedule all patient transportations

- BLS ambulance
- Assign to base with ALS capacity
- Do not schedule before release date
- Distinguish between B1 and B2
- BLS tours should be feasible
- Flexibility in execution time for B2

Model description

Schedule all patient transportations

- BLS ambulance
- Assign to base with ALS capacity
- Do not schedule before release date
- Distinguish between B1 and B2
- BLS tours should be feasible
- Flexibility in execution time for B2
 - Different possible start times per call

Model description

Schedule all patient transportations

- BLS ambulance
- Assign to base with ALS capacity
- Do not schedule before release date
- Distinguish between B1 and B2
- BLS tours should be feasible
- Flexibility in execution time for B2
 - Different possible start times per call
- Maximize coverage that remains for emergency calls

< A D > < D >

Inputs

- Calls
- Flexibility in call execution
- BLS shifts
- Travel times

<ロト < 四ト < 三ト < 三ト

Э.

Inputs

- Calls
- Flexibility in call execution
- BLS shifts
- Travel times
- Available ALS vehicles
- Inputs for coverage calculation

イロト イポト イヨト イヨト

Inputs

- Calls
- Flexibility in call execution
- BLS shifts
- Travel times
- Available ALS vehicles
- Inputs for coverage calculation
 - Demand points
 - Base locations
 - Demand

イロト イ理ト イヨト イヨト

э

Preprocessing

- Create graph
 - Source and sink for each BLS shift
 - Node for every possible start moment of call
 - Arcs between nodes that can follow eachother

イロト イポト イヨト イヨト

Preprocessing

- Create graph
 - Source and sink for each BLS shift
 - Node for every possible start moment of call
 - Arcs between nodes that can follow eachother
- Occupation of ALS vehicle
 - Depends on assigned base
 - Travel time from and to base
 - Call duration

э

Offline formulation

Objective Coverage by remaining ALS capacity

<u>Constraints</u> All transportations scheduled All tours are feasible

<ロト < 四ト < 三ト < 三ト

Objective function

 $\max \sum_{t \in T} \sum_{l \in L} d_{tl} \operatorname{coverage}(C_{tl})$

 C_{tl} number of ALS vehicles that can cover demand point $l \in L$ during time period $t \in T$ within the given time threshold.

イロト イポト イヨト イヨト

Objective function

 $\max \sum_{t \in T} \sum_{l \in L} d_{tl} \operatorname{coverage}(C_{tl})$

 C_{tl} number of ALS vehicles that can cover demand point $l \in L$ during time period $t \in T$ within the given time threshold.

Coverage function

- Every static location model can be included
- We use MEXCLP
- Busy fractions vary within the region
- Time dependent

A (1) > A (1) > A

Every call executed

$$\sum_{n \in M_i} (\sum_{j \in J} X_{nj} + Z_n) = 1 \qquad \forall i \in I$$

- X_{nj} binary variable which is one when appointment $n \in M$ is assigned to an ALS vehicle stationed at base $j \in J$, and zero otherwise.
- Z_n binary variable which is one when call $n \in M$ is assigned to a BLS vehicle, and zero otherwise.

• • • • • • • • • • • •

Tour feasibility

$$\sum_{k \in K} \sum_{h \in A_n} W_{nhk} = Z_n \qquad \forall n \in M$$

 W_{nhk} binary variable which is one when BLS vehicle $k \in K$ executes node $n \in N$ directly before node $h \in N$, and zero otherwise.

Tour feasibility

$$\sum_{k \in K} \sum_{h \in A_n} W_{nhk} = Z_n \qquad \forall n \in M$$

$$\sum_{n\in B_h} W_{nhk} - \sum_{n\in A_h} W_{hnk} = -1 \qquad \forall h\in O, k\in K;$$

$$\sum_{n\in B_h} W_{nhk} - \sum_{n\in A_h} W_{hnk} = 0 \qquad \forall h\in M, k\in K;$$

 $\sum_{n \in B_h} W_{nhk} - \sum_{n \in A_h} W_{hnk} = 1 \qquad \forall h \in D, k \in K.$

 W_{nhk} binary variable which is one when BLS vehicle $k \in K$ executes node $n \in N$ directly before node $h \in N$, and zero otherwise.

イロト イポト イヨト イヨト

Coverage constraints

$$Y_{jt} + \sum_{n \in M} b_{njt} X_{nj} = a_{jt} \qquad \forall j \in J, t \in T$$
$$\sum_{j \in J_l} Y_{jt} \ge C_{tl} \qquad \forall l \in L, t \in T$$

 Y_{jt} the number of ALS vehicles at base $j \in J$ that remain available for emergency calls during time period $t \in T$.

(日) (同) (日) (日) (日)

Preliminary results

- Region of Utrecht
- March 2014
- 2511 patient transportations
- 1089 B2 calls

イロト イポト イヨト イヨト

Preliminary results

- Region of Utrecht
- March 2014
- 2511 patient transportations
- 1089 B2 calls

	# B2 calls	% by BLS	Busy fraction	Calls per shift	Comp. time
Weekday	44	95.4%	50.1%	4.2	100 sec
Saturday	17	91.9%	22.9%	2.3	4 sec
Sunday	16	93.7%	20.4%	3.0	3 sec

イロト イポト イヨト イヨト

Preliminary results

Shift	Number of calls	
23:00:00-08:00:00	2.2	
07:30:00-14:30:00	4	
08:00:00-16:00:00	4.5	
08:00:00-18:00:00	6	
09:00:00-18:00:00	5.4	
09:00:00-18:00:00	5.3	
09:00:00-19:00:00	5.3	
15:00:00-22:00:00	3.1	
15:00:00-23:00:00	3.0	
16:00:00-23:00:00	2.9	

・ロト ・聞 ト ・ ヨト ・ ヨト・

Э.

Conclusions

- Model to schedule BLS ambulances
- Incorporates emergency calls
- Fewer calls executed late
- Night shift seems unnecessary

イロト イポト イヨト イヨト

э

Conclusions

- Model to schedule BLS ambulances
- Incorporates emergency calls
- Fewer calls executed late
- Night shift seems unnecessary

Future research

- Online version
- What is optimal number of BLS shifts?
- What is impact of earlier requests?
- What is impact of more flexibility?

▲ 同 ▶ ▲ 三 ▶

Thank you!

・ロト ・ 四ト ・ ヨト ・ ヨト

Э.